
University of California, Berkeley
Physics 110B, Fall 2004 (Strovink)

PROBLEM SET 10
Due at 5 PM on Wednesday, November 3, 2004

Problems 48-52 offer practice with complex EM fields and with the Jones vectors used to represent
fully polarized light.

48.
Consider a medium with uniform fixed dielectric
constant ε, permeability µ, and volume conduc-
tivity σ.
(a.)
Taking the curl of the two Maxwell equations
which themselves involve the curl, and using
Ohm’s law ( �J = σ �E) and the two other Maxwell
equations where appropriate, derive the wave
equations

(∇2 − ∂2

v2 ∂t2

)
�B = σµ

∂ �B

∂t(∇2 − ∂2

v2 ∂t2

)
�E = σµ

∂ �E

∂t
+

1
ε
∇ρf ,

where the phase velocity2 v2 ≡ 1
εµ and ρf is the

volume free charge density.
(b.)
In the wave equation for �B derived in (a.), sub-
stitute

�B(�r, t) = Re
(
�̃B exp

(
i(�̃k · �r − ωt)

))
,

where �̃B and �̃k are complex (vector) constants.
Show that

k̃2

µω2
= ε(1 + iβ) ,

where β ≡ σ
εω .

(c.)
Following Griffiths’ notation, write k̃ ≡ k + iκ,
where k and κ are real. Show that

k

ω/v
=

√√
1 + β2 + 1

2

κ

ω/v
=

√√
1 + β2 − 1

2

are solutions to the equation that is the result of
part (b.).

(d.)
κ−1, the inverse of the imaginary part of k̃, is
called the skin depth. Show that the skin depth
approaches

√
2

µσω
when β � 1 (good conductor)

2
σ

√
ε

µ
when β � 1 (poor conductor) .

49.
Please refer to the notation and results of the
previous problem.
(a.)
At normal incidence at the interface between
two dissimilar materials 1 and 2, the (complex)
electric field amplitude reflected back into ma-
terial 1 is expressed as a (complex) ratio R̃ to
the (complex) incident amplitude. By matching
boundary conditions for the electric and mag-
netic fields, R̃ is routinely found to be given by
the standard result

R̃ =
Z̃−1

1 − Z̃−1
2

Z̃−1
1 + Z̃−1

2

,

where

Z̃−1 ≡ k̃

µω
,

the ratio of H̃ to Ẽ, is the medium’s (complex)
admittance. Consider the case in which material
1 is an insulator and material 2 is a conductor.

If material 2 is an excellent conductor (β � 1),
show that R̃ → −1 regardless of the (finite) val-
ues taken by ε1,2 and µ1,2. Therefore metals are
shiny.
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(b.)
Suppose instead that material 2 is a poor conduc-
tor (β � 1) (otherwise all the conditions of part
(a.) apply). Suppose further that, if both ma-
terials had zero conductivity, they would have
equal admittance (

√
ε1/µ1 =

√
ε2/µ2). Show

that R̃ → −iβ/4.
(c.)
In a relatively more microscopic and detailed
treatment, one assumes that N valence electrons
per m3 having charge −e and mass m move in
a potential well with effective spring constant
mω2

0 and damping coefficient γm. One defines
the complex dielectric constant ε̃ via

ε̃

ε0
− 1 ≡ P̃

ε0Ẽ
,

where P̃ is the complex polarization, defined
analogously to the complex electric and mag-
netic fields in the previous problem. For not-
too-dense media in which the electric field felt
by the electron is approximately the same as
the average field, it is straightforward to solve
the force equation for these oscillating electrons
and determine the complex polarization P̃ they
create. One obtains

ε̃

ε0
− 1 =

ω2
p

ω2
0 − ω2 − iγω

,

where the plasma frequency2 is

ω2
p ≡ Ne2

mε0
.

The complex dielectric constant includes the
effects of all electrons (free and bound). Con-
sidering the result of part (b.) of the previous
problem, the complex dielectric constant is re-
lated to the ordinary dielectric constant ε (which
includes the effects only of bound electrons) by

ε̃ = ε(1 + iβ) =
k̃2

µω2
.

Represent a good conductor by ω0 = 0 (un-
bound) and γ � ω (overdamped). Using these

results, show that the conductivity σ is approx-
imately

σ ≈ ε0ω
2
p

γ
,

i.e. measuring the low-frequency conductivity is
a simple way to determine the damping coeffi-
cient.
(d.)
Represent the ionosphere by ω0 = 0 (unbound),
and γ � ω (underdamped). Specialize to AM
radio waves, for which ω < ωp. Show that
|R̃| ≈ 1, i.e. that AM radio waves are nearly
fully reflected by the ionosphere. (At dusk, the
ionosphere drops to sufficiently low altitude that
reflection off it enables AM stations hundreds of
miles away to be received.)

50.
Griffiths Problem 9.11.

51. Jones vectors.
For a plane transverse wave propagating in the ẑ
direction through a (not necessarily insulating)
material with constant ε and µ, a (co)sinusoidal
solution is represented by

�E(�r, t) = Re
(
�E0(x, y) ei(k̃z−ωt)

)
�H(�r, t) = Re

(
�H0(x, y) ei(k̃z−ωt)

)
,

where k̃ is the (not necessarily real) “wave vec-
tor” – here a scalar because we know it is
directed along ẑ. Faraday’s law causes �H0 to be
completely determined by �E0:

�H0 ≡ Z̃−1ẑ × �E0

=
k̃

µω
ẑ × �E0 ,

so we focus on �E0 as the sole independent vari-
able. For a transverse wave �E0 has no z compo-
nent. Here we assume that the phase relationship
between E0x and E0y is fixed – the wave is fully

polarized. Then �E0 is a complex transverse vec-
tor, completely specified by four components. In
the Jones convention, all information carried by
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�E0 except for its magnitude is written as a 2× 1
column vector with the x component on top:

�E0 =
(
E0x

E0y

)

≡ 1√|α2|+ |β2|

(
α
β

)
| �E0|

≡ �J | �E0| ,

where �J is the Jones vector. Jones vectors are
defined only within an overall phase (because
the absolute phase of an optical-frequency EM
wave can’t conveniently be measured); therefore
one has the freedom to set α equal to unity (un-
less it vanishes, in which case β is set to unity).
The above form involving the complex constants
α and β is a general Jones vector, corresponding
to elliptical polarization. More common Jones
vectors are

(
1
0

) (
0
1

)
1√
2

(
1
−i

)
1√
2

(
1
i

)
,

corresponding, respectively, to linear x, linear y,
RH circular, and LH circular polarization.
(a.)
At z = 0, show (counterintuitively!) that the
electric field vector for RH polarized light pre-
cesses clockwise around ẑ, i.e. it precesses ac-
cording to the LH rule.
(b.)
Suppose that a particular state of elliptical po-
larization has nonvanishing x and y electric field
components. Then, within an arbitrary overall
phase, it may be represented by the Jones vector

�J1 =
1√

1 + |β|2
(
1
β

)
,

where β is a complex constant. You wish to char-
acterize this state of polarization as “RH ellip-
tical” or “LH elliptical”, depending on whether
(at z = 0) the electric field vector precesses
clockwise or counterclockwise around ẑ. What
property of β would you use to decide whether
this state is RH or LH elliptical?

(c.)
For the conditions of part (b.), decompose �J1

into a linear sum (with real coefficients) of a
wave with linear polarization plus a wave with
RH circular polarization. Perform this same task
with “RH” replaced by “LH”. If you are success-
ful in both tasks, you might wonder whether
there really exists a unique association of RH
or LH behavior with �J1. Would this concern
invalidate your answer to (b.)?

52. Irradiance and Jones vectors.
Consider two transverse plane waves A and B
which move in vacuum and are combined to-
gether (i.e. by a Michelson interferometer). The
beams have complex electric fields

(
EA

0x

EA
0y

)
=

| �EA
0 |√|α|2 + |β|2

(
α
β

)
(
EB

0x

EB
0y

)
=

| �EB
0 |√|γ|2 + |δ|2

(
γ
δ

)
.

Express the combined irradiance

IA+B ≡ 〈�SA+B · ẑ〉 ,

where �S is the Poynting vector and 〈 〉 is a time
average, as a function of the complex constants
α, β, γ, δ, and the uncombined irradiances IA
and IB of the individual beams.
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